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LETTER TO THE EDITOR 
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Abstract. The phase diagram of an =-component spin model with dipolar and quadrupolar 
nearest-neighbour interactions is solved exactly in the large-" limit. In d = 3 a micritical point 
is found on the line hounding lhe paramagnetic phase. at which the first-order transition becomes 
continuous at decreasing values of the quadrupolar exchangc energy. In d = 2 the line of hrst- 
order transition ends at a critical point. The nematic-ferromagnetic transition is sNdied at order 
I/n. 

The principal goal of this letter is to report the results of an analytic study of the n 4 00 
limit of a spin model defined by the Hamiltonian 

(1) 

where ,?-I = K B T ,  the sum is over the nearest neighbours in a d-dimensional hypercubic 
lattice and Si = (S,', . . . , Si") is a unit vector at the i-site. This model was introduced by 
Krieger and James [ I ]  to describe successive orientational transitions in molecular crystals. 
At JI = 0 the model reduces to the MaierSaupe model [Z] describing the nematic-isotropic 
transition in liquid crystals, while at JZ = 0, it i s  the familiar cIassical Heisenberg model. 
For both 51 # 0 and Jz # 0, it describes uniaxial liquid crystals in which ferroelectric or 
antiferroelectric ordering is possible [3,4]. Such a model has also been proposed for the 
interactions between Mn"+ ions in MgO doped with Manganese [5 ] .  The JZ coefficient is 
found to be large in situations where the orbital motion is not quenched and a pseudo-spin 
formalism is used to characterize the energy levels. Finally, we observe that the model (1) 
is equivalent to the king gauge model coupled to classical spin matter [6] in the limit of 
large gauge couplings, so that the behaviour of (1) is relevant to the description of the phase 
diagram of that gauge model. 

An exact solution of the model (1) is known in d = 1 [7], while, more generally, the 
phase diagram is known in mean-field approximation [l]. A qualitative description of the 
phase diagram, at least at positive 52, can easily be given. First, one observes that the phase 
diagram at negative 51 is the antiferromagnetic counterpart of the one at positive JI . At 
large values of Jz, parallel or antiparallel spin configurations are favoured, so that, if the 

'H = - , T I  [ J I  Si . Sj + Jz(Si  . Sj)'] 
( i j )  

R p . 1  invariance ' [8] is broken, on varying JI at low temperatures, an king-lie hansition 
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is expected between a phase with oriented spins (ferromagnetic), and a phase with nematic 
ordering. At J2 = 0. ford > 2, one has a continuous transition of the n-component classical 
Heisenberg model between the isotropic and the ferromagnetic phase. Therefore, at positive 
J I  and Jz.  three phases are expected: a high-temperature paramagnetic phase bounding a 
nematic phase at large J2 and small J I  , and a ferromagnetic phase at large J1, This is just the 
picture emerging from the mean-field calculation of [I], confirmed by numerical simulations 
[4]. Less clear is the situation at negative J z ,  where there is competition between the two 
terms in (1). It is known only that at d = 1 for JZ < -5112 there is no long-range order 
even at T = 0 [7]. At a generic dimension, mean-field results of [ l ]  give a continuous 
transition at J1 = 3/2d, with a disordered phase extending to T = 0. 

Here we will study the phase diagram of model (1) in the limit of large n. In this 
limit at Jz = 0 the model is equivalent to the spherical model 19,101 with the well known 
continuous transition with an upper critical dimension d, = 4. With J1 = 0, it has been 
studied in [S, 11) and a first-order transition has been found for integer d > 2. We now 
study the large-n limit for arbitrary J I  and 32. 

We consider the partition function 

where the couplings have been rescaled in order to get a sensible n + 00 limit. As 
usual, the contraints in the integral (2) can be recast by introducing the standard &function 
representation 

where the integral is in the complex plane with Rez arbitrary. Moreover, the biquadratic 
term in the Hamiltonian can be expressed as 

where the integral is on the real axis if J2 > 0 and on the imaginary axis with arbitrary 
Re A;] if 52 < 0. Therefore. the partition function can be written 

where e-""fa is the result of the Gaussian integration over the variables Si. In the n --t CO 

limit the partition function can be evaluated by the steepest-descent method, with the free 
energy per site and per component f -In Z / N n  given by the quantity in square brackets 
in (5). Looking for homogeneous solutions z = u V i  and Ai, = AV(ij)  of the saddle-point 
equations af/az = 0 and a f p A  = 0, the free energy reads as 

(6) 
A2 1 452 

d 
f =&Cl n [ z - (A + J1) c c o s  q' - 4 In K + z - d -  

q &c= 1 

where the sum is over the first Brillouin zone in the reciprocal lattice. On defining the new 
variables A = 2A, A I  = 251 and 122 = 4Jz/d, the saddle-point equations are 

1 1 
N (7) at hi=-^ 

l /(A + AI)  + A/Az - cL1 COS @' 
and 
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Figure 1. The phase diagram in d = 3. The full and broken curves represent first-order 
and critical transitions, respectively. The ferromagnetic, nemaric and paramagnetic phases are 
indicated by F, N and P. 

Here the arbitrariness of Rez (and of ReA if JZ e 0) is used to satisfy (7) and (8) 
with Imz = 0 (and ImA = 0 if JZ e 0). For simplicity we will use the quantity A for 
distinguishing between the different phases: A is related to the nearest-neighbour correlation 
by 

1 A - (S. S) = - . 
n Azd 

We first concentrate on the case Jz z 0 in d = 3. Since at A1 > 0 {Si .SI) > 0, equation (9) 
gives A 2 0, so that (7) is well defined for A z -AI when A = (dA2 + - 4Az -= 0, 
or, if A > 0, in the intervals -AI < A < A-, A+ < A, where A* = 1/2(dA2 - A ,  rt 
J(dAz + - 4112) (corresponding to having no poles in the right-hand side of (7)). 
The right-hand side of (7) can be written as $&) = i p d t  e-'(e+d)[Io(t)]d [12], where 
IO is the Bessel function of zero order and : = I/(A + A I )  + A/Az - d .  At A = Ai 
one gets F = 0 and @d@) is finite for d > 2 (@3(0) 0.5054). Now we can comment 
on the phase diagram shown in figure 1 .  At small J2. when JI  is also small, A e 0 and 
there is only one solution of (7). On increasing 4 ,  A becomes positive, but only the right 
branch of $d (A+ < A) gives a solution of (7). At still larger values of J I ,  @d(O) becomes 
less than A+ + AI and a solution can be found by exeacting the zero mode in the sum of 
(7), as is usually done in the spherical model. Hence, there is a continuous transition at 
$d@) = A+ + A I ,  or 

The situation is different at larger values of Jz-just before $d splits into two branches, the 
maximum of the RHS of (7) is less than A + A I .  Then, for A1 =. 2 4 2  - dAz (A z 0), 
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there is one solution of (7) due to the zero mode of the right branch of $d,  while two other 
solutions of (7) come out due to the left branch (-A1 -= A < A-). The stable solution 
is the one minimizing (6). Here the transition is first-order. The tricritical point occurs 
when A = 0 and A1 t At = $d(o). The two conditions are verified on the critical line at 
J,”” = 0.191. When 51 = 0, the results of [&I11 are recovered . 

When 52 c 0. the inequality A > 0 always holds and (7) has to be solved in the interval 
-AI < A < At. since A- c -AI .  Here the mechanism of the continuous transition is 
effective and the critical line is still given by (10). Therefore, as in the mean-field phase 
diagram, for JZ < 0, the disordered phase extends to T = 0. 

A more physical characterization of the various regions of figure 1 would also need 
the knowledge of the behaviour of the quadrupolar order parameter (SFS; - 6,J. By 
introducing in (2) an external field for this order parameter and solving a related saddle- 
point equation [ll],  it comes out in a simple way that the quadrupolar transition coincides 
with the transition in A. However, as has been discussed before, an king transition is 
expected at large Jz .  In this context, this transition can be recovered only at order l/n. 
At large Jz the spins align along a particular direction and each vector can be written as 
Si = ( I I i ,  Si.), with the llj’s representing small fluctuations with respect to the preferred 
direction and Si. being of any sign. Then the &functions in (2) can be written as 

where the ri’s a e  king variables defined at the sites of the lattice. Then the last component 
of Si can be integrated out and to the lowest order in II we get 

The Gaussian variables lTi can finally be integrated out and an king model comes out with 
effective exchange interaction B = nJI - J l ( n  - 1)/4&d with a transition at 

Ji ”( n 1 + &) 
where Pc is the transition point of the d-dimensional king model Wc = 0.2217 in d = 3 
1131). Figure 1 shows the complete phase diagram in d = 3. The ferromagnetic-nematic 
transition given by (14) is also shown for n = 3. 

Now we consider the case d = 2. The continuous transition cannot survive, due to 
the fact that, as in the spherical model, h(0)  is an infinite quantity. The resulting phase 
diagram is shown in figure 2. It exhibits a first-order line starting from the Jz-axis and 
ending with a critical point at J I  = 0.013, Jz = 0.453. The quadrupolar order parameter 
can easily be shown to be always zero; therefore there is no continuous symmetry breaking, 
in accord with the Mermin-Wagner theorem [14]. The n -+ 00 limit of the model (1) in 
d = 2 seems to be pathological in many respects. On the line J I  = 0 the transition is 
signalled only by the behaviour of (Si - Sj) which is a quantity always equal to zero for 
n finite, due to the local gauge-invariance of the model (I)  (Si -P eiSi with ~i = f l ) .  
Thus the physical meaning of the transition line of figure 2 is also questionable for finite n. 
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Figure 2 The first-order bansition line in d = 2. 

A realistic picture of the phase diagram of model (1) beyond the n + CO approximation 
would be interesting to deduce. The n = 2 case needs further discussion. We know that at 
Jz = 00 there is an Ising transition, whereas at Jz = 0 there is a topological transition at 
finite J1 [15]. Therefore it would be interesting to know if the Ising critical point remains 
isolated or if it is stable moving inside the phase diagram and is related in some way with 
the critical point on the JI-axis. 

In summary, we have studied the phase transitions of an n-component spin model 
with dipolar and quadrupolar interactions at the leading order in the l/n expansion. The 
resulting phase diagrams are shown in figures 1 and 2, and agree with meamfield results 
[l] and numerical simulations 141. The nematic-ferromagnetic transition has been shown 
to be suppressed in the large-n limit. 

One of us (GG) warmly thanks Mario Pellicoro for useful discussions. This work was 
supported by an NATO travel grant, an NSF MRG grant, I" and by the Center for 
Academic Computing at Penn State. 

References 

[I] Krieger T 1 and James H M 1954 J. Chem Phys. 22 796 
[21 Maier W and Saupe A 1956 2 Narurf A 13 5&2, 1959 Z Nan& A 14 822 
131 Chandrasekhar S 1992 Liquid Crystolr (Cambridge: Cambridge University Press) 
[4] Biscarini F, Chiccoli C Pasini P and Zannoni C 1991 J. Non-Cryst. Solids 131 1190; 1991 Mokc. Phys. 73 

[SI RQdbell D S, Jacobs I S. Owen 1 and Hanis E A 1963 Phys. Rev. Len. 11 IO 

[61 Lammert PE, Rokhsar D S and Toner J 1993 Phys. Rev. Len. 70 1650 

171 Thorp M F and Blume M 1972 Phys. Rev. B 5 1961 
[E] Kunz H and Zumbach G 1989 3. Phys. A: Mdh. Gen. 22 1043 
191 Berlin T H and Kac M 1952 Phys. Rev. 86 821 

439 

Harris E A and Owen I 1963 Phys. Rev. Len. 11 9 

GonnelIa G 1994 Phys. Rev. E (at press) 

[IO] Stanley H E  1968 Phys. Rev. 176 718 



L776 Letter to the Editor 

11 11 Ohno K. Cvmesin H 0. Kawamura H and Okak Y 1990 Phys. Rev. B 42 10360 
[121 See. for example. Baxter R J 1982 Exactly Solved Models in Stntislical M c c h l r s  (London: Academic) 
[13] See, for example. Domb C 1974 P h c  Transitions and Criticof Phenomena ed C Domb and M S Green 

[14] Mermin N D and Wagner H 1966 Phys. Rev. Len. 17 1133 
I151 Kosterlitz L M and Thouless D J 1973 J. Phys, C: SolidSIate Phys. 6 1181 

(London. Academic) 


